- 下面这个方程,它存在于电磁学,存在于流体力学,存在于万有引力,存在于热力学,也存在于表面张力里。它,乃是拉普拉斯方程。它,无处不在。学物理竞赛的同学们一定对这个方程不陌生,可是你除了知道怎样去解之外,真的对他了解吗?拉普拉斯方程是由皮埃尔-西蒙·拉普拉斯(Pierre-Simon Laplace)首先提出而得名的。拉普拉斯则是一位世界著名的法国数学家,在维基百科上甚至有数个被冠以他的名字的页面。在1799年,他证明了在天文时间单位里,太阳系是一个稳定的系统,推翻了一个世纪前牛顿的假设。在这个过程中,拉普拉斯方程诞生了。
- 它只有5个符号。被平方的一个名为向量算子的倒三角,希腊字母φ,等号,零。通过这五个符号,拉普拉斯读懂了宇宙。φ,这个方程的精髓,通常代表势能。虽然它也可以代表其他的数值,但是在这里,我们将φ定为代表一片陆地每一点的海拔。山坡上的φ很大,山谷里的φ则很小。被一系列运算所代表的向量算子平方被称之为拉普拉斯算子。它所测量的是在这篇陆地上移动时φ值升降之间的平衡。在山顶上,不论任何方向,唯一的可能就是海拔的下降,因为它已是最高点。这时的拉普拉斯算子是负数,因为下降值比上升值大。山谷底则完全相反,正数的拉普拉斯算子是因为唯一的可能就是上升。而在这两者之间则存在着一处平衡点,在那,一步可能带来的上升和下降完全相同。在这处平衡点上,拉普拉斯算子为零。
在拉普拉斯方程里,一片陆地上所有地点的拉普拉斯算子都等于零。而这有两个结果。第一,在任何一个位置上,你都可以上升或下降相同的海拔。第二,一片陆地最高和最低的φ值都只能存在于边境。这是因为,如果φ值有变,它只能在抵达峰顶或谷底之前发生。
现实的地面很难符合拉普拉斯方程,但是皂膜不一样。把一个铁圈放进肥皂水里再拿出来,你将发现制造出来的皂膜会没有任何起伏。你可以拿着铁圈换一换姿势,但是你会发现你没有任何办法使皂膜高出或底出铁圈。从任何角度来看,铁圈的边缘都是这个平面的最高与最低点。
皂膜之所以形成这个形状是由于表面张力导致的。但是拉普拉斯算子完美的预料到并描述了它。而且你要记住,拉普拉斯发明出这个方程的原因是因为它描述了整个太阳系。
让我们用另外一个例子来描述拉普拉斯方程。想象一块带电荷的金属在空无一物的太空中。通常,太空中是没有电压的。但是,此时金属附近的空间会有和金属相似的电压。距离金属更远的空间电压则会更小,但只有在离金属无穷远的时候电压才会为零。当你离开金属所在的那点,你不会测量到任何电压的波动,因为没有任何其他电荷来导致电压波动。电压只会随着距离的增加而变小。
如果你想知道空间里任何一点的电压,你只需要解开拉普拉斯方程。
听起来很难?不用担心,拉普拉斯方程厉害之处在于,如果你想解开皂膜的拉普拉斯方程,你在最后一步之前不需要任何关于铁圈的数值。所有的步骤完全独立于铁圈。所以,你可以把它完美的套用在电压的计算上。除了最后一步,这个方程不会有一丁点的改变。
同样,它可以被运用在任何地方,只要你把最后一步改好。引力在物体表面最大,但是会渐进归零,拉普拉斯方程可以计算它。水流的速度在被阻碍时为零,但是在远处则不会有任何影响,拉普拉斯同样好使。鼓面被紧固在鼓上,它的表面张力使它持平,拉普拉斯对它也有效。
横跨宇宙,横跨教室,横跨研究,只要你注意找,拉普拉斯方程必然会出现。而你,只需要解它一次。
- 文章来源于网络,如有侵权请联系管理员删除
- 热爱物理竞赛,学物理竞赛的同学们
- 你们知道下面这些物理知识吗?
扫一扫关注公众号,看更多物理竞赛干货
复制 wulijingsai 微信公众号搜索关注