六十年了,中微子仍然如幽灵一般困扰着物理学家们,今天小编就带着学物理竞赛的你领略中微子的神奇。
中微子是什么?
中微子是一种电中性的基本粒子,自选量子数为1/2, 现在已经有证据表明其具有质量。但其质量即使相比于其他亚原子粒子也是非常微小的。它可能是现在唯一一种已探测到的暗物质,是一种热暗物质。
中微子与电子、μ子以及τ子同属轻子,有三种“味”:电中微子(νe)、μ中微子(νμ)以及τ中微子(ντ)。每种味的中微子都相应存在一种同样电中性且自旋量子數為½的反中微子。在标准模型中,中微子的产生过程遵循轻子数守恒定律。
由于中微子是电中性的,同时还是一种轻子,因而其并不参与电磁相互作用以及强相互作用。其只参与弱相互作用以及引力相互作用。 由于弱相互作用作用距离非常短,而引力相互作用在亚原子尺度下又是十分微弱的,因而中微子在穿过一般物质时不会受到太多阻碍,且难以检测。
中微子可以通过放射性衰变以及核反应等多种方式产生。由于太阳内部时时刻刻都在发生着核反应,而超新星产生等过程也会伴随着剧烈的核反应,因而在宇宙射线中可以检测到中微子的存在。地球附近所检测到的中微子大多来源于太阳。事实上,地球面向太阳的区域每秒钟在每平方厘米上都会穿过大约650亿个来自太阳的中微子。
人们现在认识到中微子在飞行过程中会在不同味间振荡,比如β衰变中产生的电中微子可能在检测时会变为μ中微子或τ中微子。这一现象表明中微子具有质量,且不同味的中微子的质量也是不同的。依据现在宇宙学探测的数据,三种味的中微子质量之和小于电子质量的百万分之一。
中微子的发展史
19世纪末20世纪初,科学家们发现,在量子世界中,能量的吸收和发射是不连续的。不仅原子的光谱是不连续的,而且原子核中放出的阿尔法射线和伽马射线也是不连续的。这是由于原子核在不同能级间跃迁时释放的,是符合量子世界的规律的。奇怪的是,物质在β衰变过程中释放出的由电子组成的β射线的能谱却是连续的,而且电子只带走了它应该带走的能量的一部分,还有一部分能量失踪了。
1930年,奥地利物理学家泡利提出了一个假说,认为在β衰变过程中,除了电子之外,同时还有一种静止质量为零、电中性、与光子有所不同的新粒子放射出去,带走了另一部分能量,因此出现了能量亏损。这种粒子与物质的相互作用极弱,以至仪器很难探测得到。未知粒子、电子和反冲核的能量总和是一个确定值,能量守恒仍然成立,只是这种未知粒子与电子之间能量分配比例可以变化而已。当时泡利将这种粒子命名为“中子”,最初他以为这种粒子原来就存在于原子核中。
1931年,泡利在美国物理学会的一场讨论会中提出,这种粒子不是原来就存在于原子核中,而是衰变产生的。1932年真正的中子被发现后,意大利物理学家费米将泡利的“中子”正名为“中微子”。1933年,意大利物理学家费米提出了β衰变的定量理论,指出自然界中除了已知的引力和电磁力以外,还有第三种相互作用—弱相互作用。β衰变就是核内一个中子通过弱相互作用衰变成一个电子、一个质子和一个中微子心宿二。他的理论定量地描述了β射线能谱连续和β衰变半衰期的规律,β能谱连续之谜终于解开了。
由于中微子与物质相互作用极弱,这种实验是非常困难的。直到1956年,这项试验才由美国物理学家弗雷德里克·莱因斯完成。首先实验需要一个强中微子源,核反应堆就是合适的源。这是由于核燃料吸收中子后会发生裂变,分裂成碎片时又放出中子,从而使其再次裂变。裂变碎片大多是β放射性的,反应堆中有大量裂变碎片,因此它不仅是强大的中子源,也是一个强大的中微子源。因为中微子反应几率很小,要求用大量的靶核,莱因斯选用氢核(质子)作靶核,使用了两个装有氯化镉溶液的容器,夹在三个液体闪烁计数器中。这种闪烁液体是是一种在射线下能发出荧光的液体,每来一个射线就发出一次荧光。由于中微子与构成原子核的质子碰撞时发出的明显的频闪很有特异性,从而证实了中微子的存在。为此,他与发现轻子的美国物理学家马丁·珀尔分享了1995年诺贝尔物理学奖。
能量缺失之谜
泡利提出中微子假说是为了试图解决β衰变的能量守恒问题。β衰变有几种,其中常见的一种是原子核里的一个中子衰变为一个质子并释放出一个电子的过程。不稳定原子经过β衰变可以变得更稳定。如果中子仅仅衰变为一个质子及一个电子,那么产生的质子和电子应该具有固定的能量,而实验却发现释放出的电子可以具有一系列不同的能量。为了解释这一现象,泡利认为必然还有一种未知的中性粒子也参与了β衰变。
在20世纪50年代初期,莱因斯和考恩开始试图探测这种微小、中性,且相互作用极弱的粒子。当时,中微子被视为神秘的“幽灵粒子”:它遍布我们周围,却直接穿透各种物质,还会在β衰变中带走能量。因此,莱因斯和考恩探测中微子的研究被称为“鬼驱人计划”。1956年,莱因斯和考恩终于捕获“幽灵粒子”,人类首次得到中微子存在的确切证据。
当时,中微子被视为神秘的“幽灵粒子”:它遍布我们周围,却直接穿透各种物质,还会在β衰变中带走能量。因此,莱因斯和考恩探测中微子的研究被称为“鬼驱人计划”(Project Poltergeist,1982年有一部美国电影叫Poltergeist,译为《鬼驱人》)。 “这个计划的名字听起来还是很贴切的,因为他们本质上也是在试图驱除一种幽灵,” 里拉格说道。
中微子反粒子之谜
中微子很特别的一点是,它有可能是自身的反粒子。“目前我们已知的唯一可以区分物质与反物质的因素是电荷,”加利福尼亚大学伯克利分校的中微子研究人员加布里埃尔·奥雷比·甘恩说,“中微子是不带电的,因此一个显然的问题是,中微子及其反粒子会有什么样的区别?”
如果中微子并非自身的反粒子,那么必然存在电荷之外的性质来区分物质与反物质。“我们目前还不知道这种性质是什么,我们将会称其为一种新的对称性。”奥雷比·甘恩如此评论道。
科学家们正试图通过搜寻“无中微子双β衰变”来确定中微子是否是其自身的反粒子。在这种实验中,科学家会搜寻两个中子同时衰变为质子的事例。标准的双β衰变会产生两个电子及两个反中微子;然而,如果中微子是其自身反粒子,那么产生的这两个反中微子就可以发生湮灭,从而只有电子从衰变中产生出来。
一些筹备中的实验设备将搜寻这种无中微子双β衰变,其中包括加拿大SNO+实验、意大利格兰萨索国家实验室的CUORE实验、美国位于新墨西哥州废物隔离试验厂的EXO-200实验,还有建在美国南达科他州霍姆斯特克矿井中的桑福德地下研究设施MAJORANA实验,这个矿井也就是戴维斯进行著名的太 阳中微子实验的那个矿井。
中微子不止三种类型?
现在我们知道,中微子其实有三种类型,或者说“味道”(flavor),即电子中微子、μ中微子和τ中微子。此外,中微子在传播的过程中,可以在不同的味道之间发生转化,或者说“振荡”。正是由于中微子可以发生振荡,我们才知道它们必然具有质量。
科学家们还假设了另外一种相互作用更弱的“惰性”中微子。为了寻找这种中微子存在的证据,科学家们正在研究短距离运动的中微子。
作为费米实验室短基线中微子计划的一部分,科学家们将利用三种探测器搜寻惰性中微子,包括短基线中微子探测器、MicroBooNE以及ICARUS(这是一台曾经在意大利格兰萨索运行的中微子探测器)。格兰萨索还将启动另一个被称为SOX的实验来搜寻惰性中微子。
中微子是否会破坏“电荷宇称对称性”
科学家们也在试图通过长基线实验来搜寻电荷宇称对称性(CP)破坏。如果宇宙大爆炸时产生了等量的物质与反物质,那么它们应该已经湮灭殆尽了;而事实是宇宙中剩余了普通物质,这表明某些机制导致了物质多于反物质。如果中微子可以破坏CP对称性,那么它可能可以解释物质的超出机制。
“正是这些未解之谜让中微子如此激动人心,”来自美国洛斯阿拉莫斯国家实验室能源部的中微子研究人员基思·里拉格(Keith Rielage)说。“现在留下的问题都非常棘手,但正如我们常常开玩笑说的那样,如果问题简单的话,早就有人已经解决了。这也是我喜欢中微子的原因,因为我们只能从未知中搜寻答案。”
对于科学研究的助益
中微子质量极小且为电中性。这令它与其他粒子及场的相互作用都非常微弱。这一特性可以令其成为具有高穿透性的探针,以探测光、无线电波等其它形式辐射所不能探测的环境。将中微子作为探针的这一想法始于20世纪中叶。当时的科学家试图用它去探测太阳核心的情况。太阳核心并不能直接成像,因为其中的光等电磁辐射会被那里的高密度物质散射。而中微子在穿过太阳时不会受太多影响。太阳核心所发出的光子可能需要四万年的时间才能到太阳的外层,但在那里通过核聚产生的中微子则可以趋近光速的速度穿行其间而不会受到太多阻碍。
中微子对于探测太阳系外的天体非常重要,因为它是目前已知的唯一一个在传播过程中不会发生较大衰减的粒子。光子在传播过程中会受到微尘、气体分子以及背景辐射的阻碍或散射。由快质子及原子核组成的高能宇宙射线囿于GZK极限不能传播超过100 Mpc的距离。中微子却可以传播更远的距离而几乎不会衰减。银河系的核心区域充满着稠密的气体与高亮度的星体。但在那里产生的中微子可以利用地面上的中微子探测器进行探测。
中微子对于超新星的观测也是十分重要的。超新星核心发生坍缩时,其内部密度以及能量都非常高。这会令除中微子以外的其他已知粒子都不能从中逃逸。而超新星近99%的辐射是以中微子短脉冲形式发出的。这些中微子对于探测核心区域的坍缩非常有用。
测定中微子的静质量对于宇宙学及天体物理学非常重要。中微子是探测宇宙现象一种非常重要的途径,是天体物理学研究者研究的重点之一。中微子对于粒子物理学的发展非常重要。它的质量非常小,可以作为标准模型扩充中低能粒子理论的研究范例。
2012年11月,美国科学家通过粒子加速器将一个相干中微子信息传过了780英尺厚的岩石,首次实现利用中微子进行的通信。未来的研究可能实现在不受中途可能遇到的像地核那样高密度物质影响前提下,利用中微子远距离传输二进制信息。
文章来源于环球物理 如有侵权请联系管理员删除 下面有更多物理竞赛科普小文:
扫一扫关注公众号,看更多物理竞赛干货
复制 wulijingsai 微信公众号搜索关注